STRIPS PLANNER

Notation: Let a be an action and S a state. By a(S) we denote the state
that results from S by applying (executing) a. In STRIPS,

a(S) = (S~ Eff) U Bff*.

Definition: Let A be a set of actions, let Sy be a state, and let G = [g1, ..., gk]
be a list of atomic formulas (list of goals). A plan for G from S is a sequence

A1,y ...0p

of actions from A such that every goal g; from G is true in state

ap(an_1(...(a1(Sp))-..))

S0 S_1=a_1(S_0) S n_1 S_n=a_n(S_n-1)

Every goal in G is in S_n

Deriving Plans by Means-Ends Analysis

Consider the following planning problem

+-——+

| a |

+———+ +-——+

| ¢ | | b |

+———+ +-——+ +——=]

| a | | b | plan | ¢ |
———tm——tm e ———— == s e
1 2 3 4 1 2 3 4

S_0 S_final

The initial state is
So = [on(a, 1), on(c, a), on(b, 3), clear(c), clear(2), clear(b), clear(4)]
What we would like to achieve is defined by the following list of goals:
Goal = [on(c,2),on(b, c), on(a,b)].

The only action available is move(X, From,To) defined as follows:

preconditions: [on(X, From), clear(X), clear(To)],

Eff*: [on(X,To),clear(From)],

Eff~: lon(X, From),clear(To)].

To derive a plan, we shall try to transform the initial state Sy into S,,2 in
such a way that the first goal on(c, 2) is true in Sy,,2. Then, we shall transform
Sm2 Into Sfing in which the remaining goals: on(b, ¢) and on(a,b) are true:

on(a,b)
on(c,?2) on(b,c), on(c,2)
O ====> . mm===>) > L ——=> ()
S_0 S_m2 S_final

1. the only way on(c, 2) can be made true is by executing move(c, From, 2),
since Ef f* will add on(c,2) to the new state;

2. to execute move(c, From, 2), the preconditions [on(c, From), clear(c), clear(2)]
have to be true: clear(c), clear(2) are true since they are in Sy; on(c, From)

is true in Sy if From = a;

3. executing move(c, a,2) produces the state
lon(a, 1), 0on(c,2),on(b, 3), clear(c), clear(a), clear(b), clear(4)];
this is our S,,:

on(a,b)
move(c,a,2) on(c,2) on(b,c), on(c,2)
O —————— > () ——> ... —=> O
S_0 S_m2 S_final

Clearly, by executing move(b, 3,c) we make on(b,c) true and, finally, by
executing move(a, 1,b) we make on(a,b) true.

on(c,?2) on(a,b)
on(b,c) on(b,c)
move(c,a,2) on(c,2) move(b,3,c) move(a,1,b) on(c,2)
O = > () ——————————————- > () ==~ > O
S_0 S_m2 S_final

In general: assume that Sy is some initial state and Goals is a list of goals.
Then:

(1) select a still unsolved goal G from Goals,
(2) find an action Ac that adds G to the current state,

(3) make Ac executable by deriving a plan (called PrePlan, to satisfy all the
preconditions of Ac; let S,,; be the state obtained from Sy by executing
PrePlan;

(4) execute Ac in S,,; giving the state S,2;

(5) solve the remaining goals in Goals by deriving a plan, called PostPlan,

from S,,5.

PrePlan Ac G true Goals true
O -——.. . — >O0 ———>) ———...——=> 0O
S_0 S_mil S_m2 S_final

PROLOG IMPLEMENTATION of MEANS-ENDS PLANNER

Representation of Actions

preconditions: can(action, Prec_List)
can(move(X, From,To), [on(X, From), clear(X), clear(To)]),

Eff*: add(action, Ef fT),
add(move(X, From,To), [on(X,To), clear(From)]),

Eff~: del(action, Eff),
del(move(X, From,To), [on(X, From), clear(To)]).

plan(State,Goals, [],State) :- satisfied(State,Goals).
plan(State,Goals,Plan,FinalState) :-
conc(PrePlan, [Action|PostPlan] ,Plan),
selectG(State,Goals,Goal),
achieves(Action,Goal),
can(Action,Condition),
plan(State,Condition,PrePlan,MidStatel),
apply(MidStatel,Action,MidState2),
plan(MidState2,Goals,PostPlan,FinalState).

satisfied(State, []).
satisfied(State, [Goal|Goals]): -
member (Goal,State), satisfied(State,Goals).

selectG(State,Goals,Goal) : -
member (Goal,Goals), not(member(Goal,State)).
achieves(Action,Goal): -

add(Action,Goals),

member (Goal,Goals) .

apply(State,Action,NewState) : -
del(Action,Dellist), deleteS(State,DellList,Statel),!,
add(Action,AddList),
conc(AddList,Statel,NewState) .

