STRIPS PLANNER

Notation: Let a be an action and S a state. By a(S) we denote the state that results from S by applying (executing) a. In STRIPS,

$$a(S) = (S - Eff^{-}) \cup Eff^{+}.$$

Definition: Let A be a set of actions, let S_0 be a state, and let $G = [g_1, ..., g_k]$ be a list of atomic formulas (list of goals). A plan for G from S_0 is a sequence

$$a_1, \ldots a_n$$

of actions from A such that every goal g_i from G is true in state

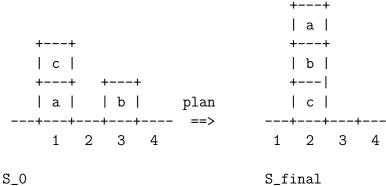
$$a_n(a_{n-1}(...(a_1(S_0))...))$$

$$a_{1}$$
 a_{n-1} a_{n} () -----> () -----> () -----> () s_{0} s_{n-1} s_{n-1} s_{n-1}

Every goal in G is in S_n

Deriving Plans by Means-Ends Analysis

Consider the following planning problem



The initial state is

$$S_0 = [on(a, 1), on(c, a), on(b, 3), clear(c), clear(2), clear(b), clear(4)]$$

What we would like to achieve is defined by the following list of goals:

$$Goal = [on(c, 2), on(b, c), on(a, b)].$$

The only action available is move(X, From, To) defined as follows:

preconditions: [on(X, From), clear(X), clear(To)],

$$Eff^+$$
: $[on(X, To), clear(From)],$

$$Eff^-$$
: $[on(X, From), clear(To)]$.

To derive a plan, we shall try to transform the initial state S_0 into S_{m2} in such a way that the first goal on(c,2) is true in S_{m2} . Then, we shall transform S_{m2} into S_{final} in which the remaining goals: on(b,c) and on(a,b) are true:

- 1. the only way on(c, 2) can be made true is by executing move(c, From, 2), since Eff^+ will add on(c, 2) to the new state;
- 2. to execute move(c, From, 2), the preconditions [on(c, From), clear(c), clear(2)] have to be true: clear(c), clear(2) are true since they are in S_0 ; on(c, From) is true in S_0 if From = a;
- 3. executing move(c, a, 2) produces the state [on(a, 1), on(c, 2), on(b, 3), clear(c), clear(a), clear(b), clear(4)]; this is our S_{m2} :

Clearly, by executing move(b, 3, c) we make on(b, c) true and, finally, by executing move(a, 1, b) we make on(a, b) true.

In general: assume that S_0 is some initial state and Goals is a list of goals. Then:

- (1) select a still unsolved goal G from Goals,
- (2) find an action Ac that adds G to the current state,
- (3) make Ac executable by deriving a plan (called PrePlan, to satisfy all the preconditions of Ac; let S_{m1} be the state obtained from S_0 by executing PrePlan;
- (4) execute Ac in S_{m1} giving the state S_{m2} ;
- (5) solve the remaining goals in Goals by deriving a plan, called PostPlan, from S_{m2} .

PROLOG IMPLEMENTATION of MEANS-ENDS PLANNER

Representation of Actions

```
preconditions: can(action, Prec\_List)

can(move(X, From, To), [on(X, From), clear(X), clear(To)]),

Eff^+: add(action, Eff^+),

add(move(X, From, To), [on(X, To), clear(From)]),

Eff^-: del(action, Eff^-),

del(move(X, From, To), [on(X, From), clear(To)]).
```

```
plan(State,Goals,[],State):- satisfied(State,Goals).
plan(State, Goals, Plan, Final State):-
  conc(PrePlan, [Action|PostPlan],Plan),
  selectG(State,Goals,Goal),
  achieves(Action, Goal),
  can(Action, Condition),
  plan(State, Condition, PrePlan, MidState1),
  apply(MidState1, Action, MidState2),
  plan(MidState2,Goals,PostPlan,FinalState).
satisfied(State,[]).
satisfied(State, [Goal|Goals]):-
  member(Goal,State), satisfied(State,Goals).
selectG(State,Goals,Goal):-
 member(Goal, Goals), not(member(Goal, State)).
achieves(Action, Goal):-
  add(Action, Goals),
  member(Goal, Goals).
apply(State,Action,NewState):-
  del(Action, DelList), deleteS(State, DelList, State1),!,
  add(Action,AddList),
  conc(AddList,State1,NewState).
```