
STRIPS PLANNER

Notation: Let a be an action and S a state. By a(S) we denote the state
that results from S by applying (executing) a. In STRIPS,

a(S) = (S − Eff−) ∪ Eff+.

Definition: Let A be a set of actions, let S0 be a state, and let G = [g1, ..., gk]
be a list of atomic formulas (list of goals). A plan for G from S0 is a sequence

a1, . . . an

of actions from A such that every goal gi from G is true in state

an(an−1(...(a1(S0))...))

a_1 a_n-1 a_n

() ------> () ------> ------> () ------> ()

S_0 S_1=a_1(S_0) S_n_1 S_n=a_n(S_n-1)

Every goal in G is in S_n

1

Deriving Plans by Means-Ends Analysis

Consider the following planning problem

+---+

| a |

+---+ +---+

| c | | b |

+---+ +---+ +---|

| a | | b | plan | c |

---+---+---+---+---- ==> ---+---+---+---

1 2 3 4 1 2 3 4

S_0 S_final

The initial state is

S0 = [on(a, 1), on(c, a), on(b, 3), clear(c), clear(2), clear(b), clear(4)]

What we would like to achieve is defined by the following list of goals:

Goal = [on(c, 2), on(b, c), on(a, b)].

The only action available is move(X, From, To) defined as follows:

preconditions: [on(X, From), clear(X), clear(To)],

Eff+: [on(X, To), clear(From)],

Eff−: [on(X, From), clear(To)].

To derive a plan, we shall try to transform the initial state S0 into Sm2 in
such a way that the first goal on(c, 2) is true in Sm2. Then, we shall transform
Sm2 into Sfinal in which the remaining goals: on(b, c) and on(a, b) are true:

on(a,b)

on(c,2) on(b,c), on(c,2)

() ----> ... ----> () ----> ... ----> ()

S_0 S_m2 S_final

2

1. the only way on(c, 2) can be made true is by executing move(c, F rom, 2),
since Eff+ will add on(c, 2) to the new state;

2. to execute move(c, F rom, 2), the preconditions [on(c, F rom), clear(c), clear(2)]
have to be true: clear(c), clear(2) are true since they are in S0; on(c, F rom)
is true in S0 if From = a;

3. executing move(c, a, 2) produces the state
[on(a, 1), on(c, 2), on(b, 3), clear(c), clear(a), clear(b), clear(4)];
this is our Sm2:

on(a,b)

move(c,a,2) on(c,2) on(b,c), on(c,2)

() -------------> () ----> ... ----> ()

S_0 S_m2 S_final

Clearly, by executing move(b, 3, c) we make on(b, c) true and, finally, by
executing move(a, 1, b) we make on(a, b) true.

on(c,2) on(a,b)

on(b,c) on(b,c)

move(c,a,2) on(c,2) move(b,3,c) move(a,1,b) on(c,2)

() -------------> () ---------------> () -----------> ()

S_0 S_m2 S_final

3

In general: assume that S0 is some initial state and Goals is a list of goals.
Then:

(1) select a still unsolved goal G from Goals,

(2) find an action Ac that adds G to the current state,

(3) make Ac executable by deriving a plan (called PrePlan, to satisfy all the
preconditions of Ac; let Sm1 be the state obtained from S0 by executing
PrePlan;

(4) execute Ac in Sm1 giving the state Sm2;

(5) solve the remaining goals in Goals by deriving a plan, called PostPlan,
from Sm2.

PrePlan Ac G true Goals true

() ----...----->() ----> () ----...----> ()

S_0 S_m1 S_m2 S_final

PROLOG IMPLEMENTATION of MEANS-ENDS PLANNER

Representation of Actions

preconditions: can(action, Prec List)
can(move(X, From, To), [on(X, From), clear(X), clear(To)]),

Eff+: add(action, Eff+),
add(move(X, From, To), [on(X, To), clear(From)]),

Eff−: del(action, Eff−),
del(move(X, From, To), [on(X, From), clear(To)]).

4

plan(State,Goals,[],State):- satisfied(State,Goals).

plan(State,Goals,Plan,FinalState):-

conc(PrePlan,[Action|PostPlan],Plan),

selectG(State,Goals,Goal),

achieves(Action,Goal),

can(Action,Condition),

plan(State,Condition,PrePlan,MidState1),

apply(MidState1,Action,MidState2),

plan(MidState2,Goals,PostPlan,FinalState).

satisfied(State,[]).

satisfied(State,[Goal|Goals]):-

member(Goal,State), satisfied(State,Goals).

selectG(State,Goals,Goal):-

member(Goal,Goals), not(member(Goal,State)).

achieves(Action,Goal):-

add(Action,Goals),

member(Goal,Goals).

apply(State,Action,NewState):-

del(Action,DelList), deleteS(State,DelList,State1),!,

add(Action,AddList),

conc(AddList,State1,NewState).

5

